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Chebyshev Quadrature Rules for a New Class 
of Weight Functions 

By Paul F. Byrd and Lawrence Stalla 

Abstract. Proof is given that the weight functions w(x, p) = I/[fr(p + x)x x(I - x) ] on 
(0, 1) admit Chebyshev quadratures for any fixed p > 1, and every N. For the particular cases 
when p = I and p = 2, the nodes are tabulated to ten decimal places for N-point rules with 
N = 2, 4, 6, 8, and 12. Numerical tables are also given for a coefficient in the expression of the 
error term. 

1. Introduction. With a specified nonnegative weight function w, the problem of 
constructing the sequence of Chebyshev quadrature formulas 

b 
N 

(1) J ~~w(x)f (x) dx = HN E f (XkN) (N = 1,2X... 
al k= I 

consists in determining the common coefficient HN and the unique N nodes XkN so 
that (1) is exact if f is any polynomial not exceeding degree N. All the nodes must be 
distinct and located in the interval [a, b] for each value of N; otherwise, the desired 
formula does not exist. Uniformity in the coefficients maximizes numerical stability 
and minimizes computational work. The question of the possibility of the construc- 
tion leads to the main task of investigating the zeros of the polynomial that provides 
the nodes. Such an investigation, however, may be very difficult, particularly if the 
given weight function contains parameters. 

Some broad results regarding the existence of Chebyshev rules over infinite 
intervals of integration are found in Kahaner and Ullman [1], Wilf [2], and Ullman 
[3]. Several results (of a negative and positive nature) are also known for some 
specific weight functions on a finite interval. Bernstein [4], for example, proved that 
quadrature formulas (1) are impossible if w(x) 1 on [-1, 1] and N = 8 or N > 10. 
Hermite showed that for every value of N, the weight function w(x) = 1/i1r -X2 

on (-1, 1) allows these integration rules (as well as having the Gaussian degree of 
precision 2N - 1). More recently, Ullman [5] proved that Chebyshev quadrature 
formulas (1) are admissible for the weight function 

(2) w(x, a) = 1 + 2ax 
'7T(I + 4a 2 + 4ax) 1- -x 

on (-1, 1) for N > 1, when lal < 1/4. (This represents an infinite one-parameter 
family, and it yields the familiar Hermite weight function when a = 0.) 
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There appears to be no other concrete example in the literature where Chebyshev 
quadrature is possible for every N on a finite interval of integration. The problem of 
characterizing all weight functions, such that formulas (1) exist for all N, remains 
open. Hopefully, exhibiting further specific examples may help elucidate a solution 
to the problem. 

In this paper, we shall show that functions of the form 

(3) w(x,p)= 1 < 
7T(2 p + I + x ) l l- ~x2 

also furnish an infinite one-parameter class of weight functions that admits 
Chebyshev quadrature for every N and any fixed p > 1. Note that none of these 
functions can be obtained from Ullman's weight function by assigning any given 
value to his parameter a, in Eq. (2). Instead of (3) on (-1, 1), however, we actually 
take the equivalent weight functions 

(4) w(x p) P p+ l) l (p l 

on the interval 0 < x < 1, the constant factor rp (p (+ 1) being introduced for the 
convenience of making the zero moment equal to unity. It is seen that when p = 00, 
the family has 1/S7x (1 - x) as a member, which is equivalent to 1/ 7T 1 - x2 on 
(-1, 1). After establishing the existence of Chebyshev quadrature for the class (4), we 
shall give soine numerical results for the particular cases 

w(x, I) =2 A 7T(l + x)/XI-X 

and 

w(x, 2) = V/[7(2 + x)Vx(I7-x)] 

2. Construction of the Chebyshev Formulas. In order to develop N-point Chebyshev 
quadrature rules 

N 

(5) CN (f HN (p) ? f(XkN) 

p(p+l)j1 f (x) dx 

'IT o (P +x)vx(-x) - EN(f) (N > I), 

for our weight function (4), we must find N + 1 parameters, the N abscissas XkN and 
the coefficient HN, such that the error EN(f) = 0 whenever f is an arbitrary 
polynomial of degree n < N. The common coefficient is simply 

(6) HN-= 1/N, 

determined by the requirement that ENM(I) = 0 when f(x) 1. There are two main 
approaches (viz., algebraic and analytic) to the determination of the remaining 
unknown parameters. 

To get the abscissas XkN algebraically, one may calculate the moments 

(7) Mn=| xnw(x, p) dx, 
0 
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and obtain the simultaneous nonlinear system 
N 

(8) xn = NMn = nN (n = 1,2,..., N), 
k= 1 

which can be resolved by use of Newton's identities. The unique N nodes XkN are 
then found to be zeros of the Nth-degree monic polynomial 

N N-1 N-2 N-3 x x x x ...1 

#IN 1 0 0 ... 0 0 
(9) 1~~~~0 I~N 13IN 2 0 ... 0 0 

(9) 
YN ( X,P )=N! |3 N I2 N AIIN 3 0 0 

INN AN-I,N AN-2,N 1N-3,N 
.. 

IN N 

involving the power sums 

(10) /3nN(a) = NMn = 4n n[( n)+2E () (n j )] 

with 

(I1) a = 2p + I - 2 p(p +i1), or p =(I _ a)2/4a. 

Except for small values of N, this method is unwieldy. 
An alternate, analytical approach, due to Chebyshev himself [6], provides us with 

a better expression for the desired polynomial. This requires the use of the familiar 
form (e.g., see Krylov [7, p. 183]) 

(12) U(z, p) = G * exp[H |jw(x, p)ln(z - x) dxj, z > 1, 

where only the polynomial part of its expansion is to be considered, with the 
constant G being chosen so that the coefficient of ZN iS unity. Equation (12) can be 
manipulated to produce 

(13) Jw(x, p)ln(z - x) dx=In 2 
1 

E 
_ 

( ) ar_ )2], 
= r ln-- (m = (+ar) 2]I 4 

where a is given by (1 1), and 

(14) r = 2z-1 + 2z(z-1)=( + z-1). 

Therefore, with (6) and (13), Eq. (12) leads to 

G )2N G 2NI 2N~ 
(15) U(z, p) = (I +r) = - E ( air j 

(4r )N 4 N j=O 

which must be truncated in order to get the so-called "proper terms" of the series. 
Noting that the polynomial part of l/rN i is the shifted Chebyshev polynomial 
TN*-j(z) taking G = 2, and setting z = x, we obtain the final explicit form 

(16) YN (X, P) -N(X, a) = polynomial part of U(x, p) 
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where the prime on the summation sign means that the term when j = N is to be 
halved. If a = 0, i.e., when p = oo, this reduces immediately to 

2 
(17) Y(x, -T)N* N(x,0)=-TN(X) 

whose zeros are the abscissas for the Chebyshev quadrature involving the well-known 
function 1/ x (l i-x). 

3. Establishment of Existence. To prove that the N zeros of (16), which provide the 
nodes XkN for formulas (5), are all distinct and located in the interval [0, 1] for every 
fixed p > I and each N > 1, we now show that YN(x, p) will change signs N times 
on [0, 1] if 0 < a < 3 - 2, i.e., for all p > 1. The analysis is straightforward but 
involves some manipulative details that, for brevity, are not included. 

Replacing TN*>j(x) in (16) by TN* _j(x) = 2[RN-J + R N+J], where 

(18) R=2x-l+2x(-l 

gives 

(19) YN(X, P) =cpN(X, a) 

a (2N)+ R (2 ) R2NJ +R RN (2N)aJR 2R+N 

Since the truncated binomial series 

(20) E (2 )aJR2NJj = (a + R )2N N(2)(a t )N(R+t)N dt 

Eq. (19) becomes 

(21) PN(x, a) = aN(2$) +-N4[R (a + R) + RN(a R)] 

-N (2 NJ(a - t)N[R N(R + t)N-1 + RN(R_I + t)N-1 dt. 

It can be shown that 

(22) i [RN(a + R)2N + RN(a + R_1)2N] 

=2[(l a)2 +4axINT4 x() +a) I 

and that 

(23) _N (2N) (a - t)N[RN(R N + t)N-1 + RN(R_I + t)N-1 dt 

= _( 2 )_ aNON (XI lI/a ). 

Hence Eq. (16) may be written in the interesting form 

(24) 2p(x,a) = N[l - a)2 + 4ax] N T[-(I +2a - a2N4N((XI 1/a), 
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or as 

(25) 'ON(X a) = - a)2 + 4ax] N. cos(NA) - a2 NN(XI '/a), 

where 

(26) cosA - 2x(l + a2) -( 1-a )2 
(l-a)2 + 4ax 

We note from (26) that if 0 < x < 1, then s7 > A > 0. Noticing also that when 
A =Am= m7/N, i.e., if 

(27) x = t = (1 
_ 

a)2(l + cos Am) mN 
2(1 + a2 - 2a cos Am) 

p cos2(mv/2N) (m = O, 1,... I N) 
p + sin2(mv/2N) 

we then have cos(NAm) = (-1)m. Thus the left-hand side of Eq. (25) will change 
signs exactly N times whenever 

(28) 
2 

[(I - a)2 + 4ax]N > a2I+N(x,I/a)I> 0 

for 0 < x < 1. If 0 < a < 1, however, we have, from (16), 

(29) a2NIPN(X, 1/a)l 2:N E( N )a ITN*T(j) X N E = aN 

so, instead of (28), it is sufficient to consider the inequality 

(30) [(I a)2 + 4ax]N > aN > 0, or p + x > (2) 

Now this is clearly true for each N and any x in [0, 1] if p > 1, i.e., for all a in 
0 < a < 3 - 21. But it will not hold for a fixed p and every N and x if p < 1, i.e., 
whena > 3 - 21. The case for a = 0(p = oo) is given by (17). 

Since the polynomial cNN(X, a), or its equivalent YN(x, p) in (16), has N variations 
of sign in the interval [0, 1] for every value of N whenever p > 1, it will indeed 
furnish the N distinct real nodes XkN for the quadratures (5), with the common 
coefficient being HN = 1/N. The functions given by (4) therefore represent an 
infinite one-parameter family of Chebyshev weight functions on (0, 1). One can show 
that the sequence CN (f ) of approximate integration formulas (5) will converge to 
the true value for any continuous function f. 

4. Remark. It can be seen that our weight function (4), as well as Ullman's (2), is a 
product 

(31) w(x, p) = q(x, p)h(x), 

in which q(x, p) is a certain rational function containing a parameter, and where 
h(x) is the classical Hermite weight function l/7TFx(1 - x) which already admits 
Chebyshev quadrature on (0, 1). The form (31) may thus be regarded as a special 
modification of the weight function h(x). Since Ullman and the authors have 
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actually found two concrete examples of q of a similar type, where Chebyshev 
quadrature is still possible with the modified weight function w, this suggests a 
broader problem of characterizing all nonnegative rational functions q such that the 
product q(x)h(x) is again a Chebyshev weight function on the same interval. 

5. The Error Term. If the functionf is other than a polynomial of degree < N, the 
integration formulas (5) have an error term given (e.g., see Kopal [8, p. 419]) by 

(N + N 1)! (32) EN(f = (N ( I))!<(VI() fO < e< 19 

where 

(33) KN(a) N [NMN+? 
- 

(XIN 

with MN+ I given by (7). Knowing the coefficient KN permits an estimate of the 
maximum error made by Chebyshev quadrature, of the form 

(34) fEN(f)f< (N ( 1)! mnax If(N+I)(x)1. 

6. Some Computational Results. In order for the quadrature rules (5) to be usable 
in numerical calculations, the roots X,Ns I < i < N, of the polynomial (16) must be 
found, preferably by an on-line, readily user-reproducible technique which incorpo- 
rates a provision for verifying the accuracy of its results. Such a procedure, based on 
a single-parameter Newton's method analysis, is used to obtain numerical results for 
the particular cases when p = 1 (for a- = 3 - 2V), and when p = 2 (for a = 5 - 

2V6 ). N-point Chebyshev quadrature rules for these two weight functions are 
tabulated to ten decimal places for N = 2,4, 6, 8, and 12. Since the error coefficients 
KN in the remainder term (34) may be useful when a bound on the (N + 1)th 
derivative can be estimated, we give tabulations of them. 

The polynomial PN(X, a) and its first derivative 4N(X, a) may be written as 

N 

ON (XI CO 2 VON (0 + EVjN(')Tj* (X)' 

N-1 

X, a) 2 PON(a) ?+ E P N(0)Tj*(X) 

where the coefficients VN (a) and P,N(a) are recursively defined by 

VNN(a) N ' PV+IN(a) 
= 

PNN( a) 
= 0, 

V ( ) (N +j)a V (a) 

and 

P_1,N(a) = PJ+I,N(a) + 4jIjN(a) (j = 1,2, ... , N). 
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These coefficients depend only on the user-chosen values of N and a, and may 
therefore be calculated prior to the iterations by Newton's method. The shifted 
Chebyshev polynomials are evaluated recursively using 

To (x) = 1, T, (x) = 2x - 1, T*(x) = 2(2x - 1)Tj l (x) - T!2(X). 

The iterative scheme 

XIk+1) 
=X_(k) 

_ 

4N(XN, 

) a) iN 
(k ),a 

was found to be stable and rapidly convergent, because for most N of computational 
interest, the quantity IS54(x, a)l tends to maximize near the roots of fN(X, a); ths 
can be seen in the sample plot of +4(x, a) given in Figure 1 for three values of a. 
Since, as shown from (27), the ith root of (N lies in the interval tN-i+ ,N < XXN < 

tN-* N with O < xIN < X2N < < XNN < 1, we take 

iN 2 [tN-i,N + tN-.+I,N] (i = 1,2,..., N), 

as the initial guess for each root. 

0 a=3-2/7 
o A a=5 

00 

0 + 0 

00 

~ 0 0. 0.25 0.38 0.50 63 .75 0.8 1.00 

x 

0 

FIGURE 1 

Graph illustrating the behavior of ?44(x, a) on [0, 1] for 3 
particular values of the parameter a within the allowed range of 
values of a. 
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Results generated by following this procedure on a CDC 3150 computer with 

N = 2,4,6,8, and 12, and for a = 0, 5 - 2V6, and 3 - 2V2, are tabulated in Table 
1. The extent to which the differences 

N 

DjN(a) 
= IjN(a) E XifN (j j 1,2,..., N), 

deviate from zero provides a measure of the computed accuracy of the N nodes xiN. 

From all the calculations of the entries in Table 1, we found D(a) < 10-28, 

indicating that our computations were reliable to at least twenty-eight significant 

figures. For the values of N and a used in Table 1, the error coefficients KN(a), 

defined by (34), are tabulated in Table 2. 

TABLE I 

Abscissas Xi,N i-1,2,..., N, for our quadrature, generated for 
5 particular values of N and 3 values of the parameter a or p. 
Note that a = 0 (or p = oo) corresponds to the familiar 
Hermite weight function. 

a n O oa - 5- 2V'6 3 - 2r2 
(p m ) (p - 2) (p - 1) 

N - 2 0.1464466094 0.0977450101 0.0659028626 
0.8535533906 0.8012344754 0.7625242621 

N - 4 0.0380602337 0.0254733441 0.0170752109 
0.3086582838 0.2298526735 0.1871077662 
0.6913417162 0.5985128515 0.5249093675 
0.9619397663 0.9441201021 0.9277619049 

N - 6 0.0170370869 0.0114021218 0.0077412136 
0.1464466094 0.1026906220 0.0808809415 
0.3705904774 0.2818298930 0.2257712812 
0.6294095226 0.5310518400 0.4601690701 
0.8535533906 0.7952976760 0.7441166973 
0.9829629131 0.9746663039 0.9666021705 

N- 8 0.0096073598 0.0064229328 0.0044099845 
0.0842651938 0.0578066622 0.0449660816 
0.2222148835 0,1599869457 0.1240124328 
0,4024548390 0.3098793161 0.2525702250 
0.5975451610 0.4974414108 0.4257406510 
0.7777851165 0.7000112490 0.6365128547 
0.9157348062 0.8787112362 0.8445150007 
0.9903926402 0.9856581895 0.9809812686 

N - 12 0.0042775693 0.0028557266 0.0019908973 
0.0380602337 0.0256996862 0.0197860323 
0.1033233299 0.0713390234 0.0540285177 
0.1956192855 0.1395099838 0.1087757624 
0.3086582838 0.2293711548 0.1822621767 
0.4347369039 0.3389414828 0.2778606180 
0.5652630961 0.4643319085 0.3939298750 
0.6913417162 0.5989121599 0.5283045990 
0.8043807145 0.7327141797 0.6727649545 
0.8966766701 0.8526284749 0.8127084158 
0.9619397663 0.9439757914 0.9266692963 
0.9957224307 0.9935973415 0.9914816035 
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TABLE 2 

Error coefficients KN (a) for the values of N and a used in Table 1. 

o N - 2 N - 4 N - 6 N - 8 N - 12 

0 0.18933D-28 0.37865D-28 0.54694D-28 0.34710D-28 0.65213D-28 

5-2/c 0.93740D-02 0.69754D-04 0.58728D-06 0.52174D-08 0.44597D-12 

3-2V4 0.15611D-01 0.33509D-03 0.81380D-05 0.208550-06 0.14832D-09 
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